Authors
Yodai Yamamoto, Haruka Taniguchi, Ngoc Minh Nguyen, Fuki Yokoyama, Kiattawee Choowongkomon, Alessandro Angelini, Jun-ichi Horiuchi, Yoichi Kumada
First author
Yodai Yamamoto
Corresponding author
Yoichi Kumada
Publication Style
Journal name Jounral of Immunological Methods
Year
Volume, issue, pages
534, 113771
Abstract
Most of currently available sandwich-type enzyme-linked immunosorbent assays (ELISA) require the use of full-length animal-derived antibodies which poses welfare criticisms and are often expensive to produce. There is therefore a strong demand for the development of more affordable and animal-free methods to produce antibodies for sandwich ELISA assay. To address these issues, we propose here the development of a new technology based on two complementary rabbit single-chain variable fragments (scFvs) and an Ig-binding domain of protein L (PpL1) fused to a polystyrene-binding peptide (PS-tag) that can be recombinantly produced in bacteria. Toward this goal, we developed a rabbit scFv capable to bind the antigen via its variable regions while engaging protein L through its constant framework domain. To enhance the density of captured scFv and enable a better solvent exposure, we generated multiple PpL1 variants bearing polystyrene-binding peptides (PS) tags fused to its ends. The tandem trimer of PpL1 variant bearing PS-tags located at the N-terminus (PpL1′-T-PSN) revealed increased antigen-binding signal when immobilized on hydrophilic polystyrene (phi-PS) plates. By CDR-grafting different antigen-binding specificities into our engineered protein L-binding scFv we validated our technology against a different antigen. Finally, to further enhance the sensitivity of our assay, we implemented a protein L-based pretreatment to remove potential inhibitory immunoglobulin often present in the blood samples. The ability to rapidly and cost-effectively generate animal-free recombinant antibody fragments that can be adsorbed and specifically oriented on plates while retaining their antigen-binding properties could lead to the development of innovative and widely applicable sandwich ELISA systems for the efficient, versatile and sensitive detection of different types of antigens.